
A Terminology

In Table A1, we present an overview of the different states and the terminology used throughout
the manuscript.

Table A1: Notations related to the compartments in the model

State Description

S(t) Susceptible individuals

E(t) Infected individuals not being infectious yet

Ipresym(t) Individuals pre-symptomatically infected

Iasym(t) Asymptomatically infected individuals

Imild(t) Infected individuals with mild symptoms

Isev(t) Infected individuals with severe symptoms requiring hospitalization

Ihosp(t) Hospitalized individuals

Iicu(t) Individuals admitted to intensive care unit

D(t) Number of deaths

R(t) Recovered individuals

B Model parameters

In this appendix, we provide a detailed overview of the different assumptions related to the trans-
mission process and the change in behaviour upon (severe) symptomatic infection.

B.1 Susceptibility and infectiousness in children

Until recently, there was no (conclusive) evidence of differential infectiousness and/or susceptibility
to COVID-19 infection in children. Some authors claimed that no significant differences in viral
load were present between (symptomatic) children and adults, even after revising their work [1].
A re-analysis of these (initial) findings by Held and McConway and Spiegelhalter [2, 3], however,
clearly shows that children between 1 and 10 years old have on average only 27% (95% CI: 8% -
91%) of the viral load of adults aged 20 years or more. For the mathematical model proposed here,
we do not differentiate between infectiousness and susceptibility in children as compared to adults
directly [4]. However, as children are presumed to be more likely to have a higher probability of being
asymptomatically infected (see Section B.2), and the relative infectiousness of asymptomatic versus
symptomatic individuals rβ is (assumed) equal to 0.51 [5], children are implicitly less infectious,
hence, contribute less to the transmission process relative to adults.

B.2 Age-dependent proportions of asymptomatic cases

The age-dependent proportions of asymptomatic cases, represented by the vector p, are based on
a study by Wu et al. (2020) [6]. More specifically, we use the age-specific relative susceptibility to
symptomatic infection reported by Wu et al. (2020) [6] to inform the proportion of asymptomatic
cases. In order to do so, we start from an overall age-weighted proportion of asymptomatic cases
in the Belgian population equal to 50% [6] implying that

p = (0.94, 0.90, 0.84, 0.61, 0.49, 0.21, 0.02, 0.02, 0.02, 0.02)T .

Although we are fixing the age-dependent proportions of asymptomatic cases in the model, we do
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Figure B12: Relative susceptibility to symptomatic infection as a function of age (in years) reported
by Wu et al. (2020) [6] (left panel) and the proportion of asymptomatic cases by age relying on the
assumption of 50% of asymptomatic infections.

allow for differential probabilities of hospitalization through the specification of an age-dependent
probability of only having mild symptoms upon being symptomatic. The reason for this constraint
is the fact that based on the available data, we cannot disentangle the age-specific probability of
being asymptomatic from the probability of having mild symptoms.

B.3 Symptom severity upon symptomatic infection

In Table B1, the proportion of hospitalizations and ICU admissions are reported for COVID-19
cases by age group in the United States (between February 12 - March 16, 2020) [7].

Table B1: Hospitalization and Intensive Care Unit (ICU) admission percentages (%) for reported
COVID-19 cases by age group based on data from the USA, February 12 - March 16, 2020 [7].

Age group Hospitalization Average ICU Average Age group φ0 φ1

0-19 1.6-2.5 2.05 0.0 0.00 [0,10) 98.0 100.0

20-44 14.3-20.8 17.55 2.0-4.2 3.10 [10,20) 98.0 100.0

45-54 21.2-28.3 24.75 5.4-10.4 7.90 [20,30) 79.0 85.0

55-64 20.5-30.1 25.30 4.7-11.2 7.95 [30,40) 79.0 85.0

65-74 28.6-43.5 36.05 8.1-18.8 13.45 [40,50) 67.0 76.0

75-84 30.5-58.7 44.60 10.5-30.0 20.25 [50,60) 67.0 76.0

≥ 85 31.3-70.3 50.80 6.3-29.0 17.65 [60,70) 50.0 73.0

[70,80) 35.0 69.0

Total 20.7-31.4 26.05 4.9-11.5 8.20 [80,100) 32.0 74.0

In our model, we estimate the age-specific probability of developing only mild symptoms φ0. Fur-
thermore, the probabilities φ1 are fixed to the values reported in Table B1. Note that if, for example,
φ1(k) = 0.75 and φ0(k) = 0.8, representing the probability of hospitalization conditional on having
severe symptoms and the probability of having mild symptoms in age group k, then the probability
of hospitalization in symptomatic individuals is equal to 0.2 × 0.75 = 0.15. Since we lack detailed
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age-specific information about the relative proportions of ICU admissions as compared to the to-
tal number of hospitalizations, and data on referral between ICU and hospital wards throughout
hospital stay, we are not able to inform φ1.

B.4 Case fatality rates - Probability of dying upon hospitalization

Age-dependent case fatality rates have been adopted from Riou et al. (2020) [8] which were esti-
mated from outbreak data obtained in Hubei, China in the period January to February. In Table B2,
we present these age-specific case-fatality rates µ̃(k) (number of deaths relative to confirmed cases).
In our analysis, the rates µ(k) are rather representing the probability of dying upon hospitalization
(deaths relative to number of hospitalized individuals), taken to be equal for hospitalized individu-
als and critically ill individuals (i.e., µ(k) ≡ µhosp(k) = µicu(k)), which also relates to the inability
of disentangling hospitalization from ICU admission based on the available data. In the stochastic
model, however, we estimate these rates µ(k) from the available mortality data. Due to the low
number of deaths in young age categories, we assume that µ(1) = 0 and µ(2) = µ(3), comprising
parameters to be estimated from the data. A complete list of model parameters with reference
values is presented in Table B3.

Table B2: Age-dependent case-fatality rates.

[0-10) [10-20) [20-30) [30-40) [40-50) [50-60) [60-70) [70-80) [80-90) [90, ∞)

0.000094 0.00022 0.00091 0.0018 0.004 0.013 0.046 0.098 0.18 0.18

B.5 Overview of epidemiological and model parameters

An overview of important epidemiological parameters related to SARS-CoV-2/COVID-19 transmis-
sion dynamics is provided in Table B3 together with relevant sources. Some of these parameters are
directly or indirectly included in the modeling approach. In the last column we indicate whether
these parameters are estimated or fixed in the estimation procedure. A detailed overview of all
model parameters can be found in the next subsection.

B.6 Prior distributions

In Table B4, we present an overview of the prior distributions considered for the various model
parameters.
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Table B3: List of epidemiological parameters; ∗: for asymptomatic individuals only.

Notation Description Value Source Model

ρ−1 Average length of incubation period 5.2 (4.1, 7.0) [5] Estimated
5.2 days [9]
5 days [10]
4 days [11]

γ−1 Average length of latency period 2 days – Estimated

θ−1 Average length of pre-symptomatic 3.2 days ρ−1 − γ−1 Estimated
infectious period

σ−1 Average length of infectious period 4.5 days [12] –
5 days∗ [13]
6 days∗ [14]
5–7 days [4, 15]
9.3 (7.8, 10.0) [16]

ω−1 + δ∗−12 Average time between (severe) symptom 5.9 (0.8, 11.0) [17] Estimated
onset and hospitalization 2.7 (1.6, 4.1) [10]

3 – 10.4 [18]

δ−11 Average length of infectious period when 3.5 days – Estimated
asymptotically infected (after pre-symptomatic
phase)

δ∗−12 Average length of infectious period when 3.5 days – Estimated
mildly infected (after pre-symptomatic phase)

δ∗−13 Recovery period of hospitalized individuals – 11.5 (8.0, 17.3) [19] Estimated
length of stay in the hospital 13.3 (7.3, 19.3) [17]

δ∗−14 Recovery period of critically infected in ICU – 14 days – Estimated
length of stay in ICU

p Proportion of asymptomatic cases 0.42 (0.17, 0.67) [20, 21] Fixed
0.35 (0.30, 0.39) [22]

1− φ0 Proportion of symptomatic cases 0 (children) [23] Estimated
developing severe to very severe symptoms 0.1 (adults) [24]

0.2 (seniors) [25]
0.2 (constant) –

φ0 Proportion of symptomatic cases 1− (1− φ0) – Estimated
developing only mild symptoms

1− φ1 Proportion of hospitalized persons 0.25 (constant) – Fixed
requiring ICU admission

rβ Relative infectiousness of pre-symptomatic 0.51 [5] Fixed
and asymptomatic individuals

R0 Basic reproduction number 2.24 (1.96, 2.25) [26] Estimated
2.35 (1.15, 4.77) [27]
2.36, 2.5 [28, 29]
3.00 (2.80, 3.20) [30]
3.00 (2.60, 3.30) [31]
3.10 (2.90, 3.20) [32]
3.60 (3.49, 3.84) [33]
3.60 (3.20, 4.20 [34]
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Table B4: Prior distributions for the model parameters.

Baseline scenario

Parameter Prior distribution # parameters

γ N(0.500, 0.0502) 1

θ N(0.286, 0.0502) 1

δ1 N(0.286, 0.0502) 1

δ∗2 Un(0, 1) 1

δ∗3 Un(0, 1) 1

ω(k) Un(0, 1) 10

β∗1 Un(0, 5) 1

φ0(k) Un(0, 1) 10

µ(k) Un(0, 1) 8

R0 N(2.500, 0.1002) 1

C Social contact data

C.1 Baseline contact matrices

The contact matrices for the asymptomatic individuals (Casym) is taken to be equal to the general
contact matrices collected in the Belgian survey in 2010–2011. Thus we assume that individuals
do not change their contact behaviour when being asymptomatically infected with COVID-19.
The overall contact matrix is the sum of the contact matrices encompassing contacts made at the
following locations: home, work, school, transportation, leisure and other places.

Thus Casym is obtained as follows:

Casym = Chome +Cwork +Cschool +C leisure +Ctransport +Cother

In Figure C1, we graphically depict the social contact matrix Casym in terms of the average number
of daily contacts for individuals of different age groups contacting each other. The contact matrices
for symptomatic individuals are obtained by re-scaling the matrix Casym in the respective locations
by the relative change in the number of contacts observed by Van Kerckhove et al. [35] during
the 2009 A/H1N1 pandemic Influenza in England. Hence, we presume that social contacts are
adapted in a similar way in the Belgian population upon contracting the disease and experiencing
symptoms. Thus, Csym is defined as a weighted sum of the aforementioned contact matrices at
specific locations, i.e.,

Csym = Chome + 0.09Cwork + 0.09Cschool + 0.13Ctransport + 0.06C leisure + 0.25Cother

C.2 Intervention contact matrices

The contact matrices for the asymptomatic individuals during the lockdown depend on the inter-
vention considered (see Table 1). The contact matrices made in all locations are changed except for
the one accommodating contacts made at home. The framework of assigning relative reductions to
the social contact matrices obtained at the different locations can be illustrated as follows:

Casym = Chome + αCwork + αCtransport + βCschool + ρC leisure + ρCother,

where 1 − α represents the percentage of telework considered (people working from home and/or
who have stopped working), β represents the percentage of school contacts retained (hence, 0 in
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Figure C1: Average number of contacts per day between individuals of different age classes - social
contact matrix Casym based on the social contact data from Belgium anno 2010–2011.

case of school closure), ρ represents the fraction of contacts during leisure and other activities that
are still made given the imposed measures targeting physical distancing. The contact matrices of
the symptomatic Csym are obtained in a similar manner:

Csym = Chome + α (0.09Cwork + 0.13Ctransport) + 0.09βCschool + ρ (0.06C leisure + 0.25Cother) .

All location-specific contact matrices from the Belgian social contact survey in 2010 are directly

Figure C2: Average number of contacts per day between individuals of different age classes -
social contact matrix Casym based on the social contact data from Belgium anno 2010–2011 after
intervention measures are imposed according to the 80% TW & SC scenario outlined in Table 1.

available at http://www.socialcontactdata.org/socrates/.

The performance of the matrices presented in Table 1 are compared based on the Deviance Infor-
mation Criterion (DIC), introduced by Spiegelhalter et al. [36] to compare the relative fit of a set of
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Bayesian hierarchical models. DIC is a relative measure balancing goodness-of-fit and complexity
of a model and is based on the deviance. An overview of the respective DIC-values related to the
different choices of the intervention contact matrices is presented in Table C5.

Table C5: Deviance Information Criterion (DIC) values for the different social contact matrices
considered to quantify the impact of the intervention measures on social contact patterns. Percent-
age of average number of pre-pandemic contacts at different locations. WT: Work and transport
reductions, SC: School closure.

Social contact matrix Work & Transport School closure Leisure & other activities DIC

50% WT & SC 50% Yes 10% 12930.98

60% WT & SC 40% Yes 10% 12896.75

70% WT & SC 30% Yes 10% 12459.82

80% WT & SC 20% Yes 10% 11577.97

90% WT & SC 10% Yes 10% 12477.25

D Hospitalization incidence data

In Figure D1, we depict the weekly age distribution of hospitalized cases derived from the clinical
surveillance database of COVID-19 hospitalized patients during the first wave of COVID-19 in
Belgium. As mentioned in the main text, the day of introduction is considered to be March 1, 2020.
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Figure D1: Weekly age distribution of hospitalized patients in Belgian hospitals during the first
COVID-19 wave in Belgium.

E Serological survey data

We use serial serological survey data collected during two cross-sectional periods and based on
residual samples coming from 10 private laboratories [37]. Serological survey data is collected
at different cross-sectional sampling times and blood samples are tested for the presence of IgG
antibodies against the SARS-CoV-2 virus. Consequently, individuals are classified as seronegative,
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equivocal or seropositive based on their measured IgG antibody concentration against S1 proteins
of SARS-CoV-2 obtained from the EuroImmun semi-quantitative ELISA test kit (EuroImmun,
Luebeck, Germany). The age-specific seroprevalence is derived as the proportion of seropositive
individuals in each age class.

In order to relate the model-based prevalence of COVID-19 in the population to the observed
seroprevalence, we assume that the seroprevalence at calendar time t and age a is denoted by
π(a, t) and that IgG antibodies against SARS-CoV-2 are detectable upon infection according to the
following logistic function:

psens(t0) = expit(β0 + β1t0) =
exp(β0 + β1t0)

1 + exp(β0 + β1t0)
,

where psens(t0) represents the probability of having a sufficiently high IgG antibody concentration
to indicate past SARS-CoV-2 infection. The sensitivity of the diagnostic tests is considered to be a
function of the time since symptom onset t0 (at least in the presence of symptoms), i.e. sensitivity
of the diagnostic testing procedure as a function of time since onset of symptoms presuming a
sensitivity of zero prior to symptom onset. In this modeling approach, we rely on estimates of
the sensitivity curve obtained from the literature [38], reaching a sensitivity of 99% 14 days after
symptom onset, albeit that sufficient information regarding the sensitivity of the specific diagnostic
test in use is currently lacking. In this exercise, specificity of the test is presumed to be very high
(100%), implying no false positive test results. A lower specificity would lead to more false positive
cases, thereby overestimating the seroprevalence as compared to the true underlying prevalence in
the population. Since the model is calibrated on hospitalization data, the increase in false positives
would imply an underestimation of the probability of hospitalization and an overestimation of the
total number of infected cases in the population (the so-called dark number). However, we do
believe that the general conclusions with regard to the impact of exit strategies on the burden of
the healthcare system through the number of hospitalizations and deaths are not affected by this
lower specificity, especially since there is little acquired immunity.

The total number of individuals of age a at the time of data collection t (expressed as days since
the start of the epidemic) in the population that will test positive can be written as:

np(a, t) =
t∑

j=0

psens(j)
{
Inewsym,t−j(a) + Inewasym,t−j(a)

}
,

where Inewsym,t(a) and Inewasym,t(a) refer to the number of new individuals of age a with symptom
onset at time t and the number of individuals of age a entering the asymptomatic state at time t,
respectively. Although still uncertain to date, asymptomatic individuals are presumed to be similar
to symptomatic ones in terms of their humoral immune response following exposure to the SARS-
CoV-2 virus.

More recently, Borremans et al. (2020) [39] showed that IgG antibody detection probabilities
increase with time since symptom onset, implying that nearly all (98–100% of) individuals had
detectable antibodies by day 22–23 after symptom onset. Although detection probabilities are
estimated based on different assays, these authors showed that all assays exhibit comparable growth
rates except for a slower increase in antibody levels for IgG ELISA-Spike assays. As a sensitivity
analysis, we show the impact of altering the logistic sensitivity curve psens(t0) (black line) with a
delayed 99% detectability of IgG antibodies in line with the aforementioned findings by Borremans
et al. (2020) (red line in Figure E2) in Appendix F.
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Figure E2: Presumed sensitivity curves with time since onset of symptoms. The black solid line
represents the sensitivity curve constructed based on results in Lou et al. (2020) [38] and the red
line is based on the findings by Borremans et al. (2020) [39].

F Additional results

F.1 Posterior summary measures

Here, we present an overview of the posterior mean, median and 95% credible intervals (CIs) for
all model parameters, and parameters derived thereof, in the final model (Table F1). In total,
the final model has 35 parameters. As mentioned in Appendix B, the vectors defining the age-
specific probability of being asymptomatic p and the probability of regular hospitalization versus
ICU admission φ1 are fixed, δ2 = φ0δ

∗
2 and ψ = (1 − φ0)δ

∗
2 . Moreover, δ3 = δ4 = (1 − µ)δ∗3 and

τ 1 = τ 2 = µδ∗3 . Note that µ(1) is fixed to zero as there are no deaths observed in the age group
[0, 10) and µ(2) = µ(3) given the very small number of deaths in age groups [10, 20) and [20, 30).
Furthermore, q is an implicit model parameter governing the extent of R0. Prior distributions for
all 35 model parameters are listed in Table B4.

F.2 Number of individuals in different compartments

In Figure F1, the evolution of the proportions of susceptible, exposed, pre-symptomatic, asymp-
tomatic, mildly infected and individuals with severe symptoms (prior to hospitalization) are shown
by age group until May 4, 2020.

F.3 Compliance to intervention measures

The compliance to the intervention measures is modelled using a logistic curve which is depicted in
Figure F2. Full compliance to the measures is reached after approximately 6 days.
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Table F1: Posterior mean, median and 95% credible interval for the model parameters; CI: credible
interval.

Parameter Mean Median 95% CI Parameter Mean Median 95% CI

q 0.051 0.051 (0.049, 0.54) δ1 0.240 0.240 (0.224, 0.262)

γ 0.729 0.730 (0.672, 0.791) δ∗2 0.756 0.756 (0.713, 0.806)

θ 0.475 0.476 (0.434, 0.523) δ∗3 0.185 0.185 (0.171, 0.200)

β∗1 1.404 1.401 (1.283, 1.551) R0 2.900 2.899 (2.885, 2.918)

φ0(1) 0.972 0.972 (0.968, 0.975) φ0(6) 0.971 0.971 (0.969, 0.972)

φ0(2) 0.992 0.992 (0.991, 0.993) φ0(7) 0.958 0.958 (0.956, 0.960)

φ0(3) 0.984 0.984 (0.982, 0.985) φ0(8) 0.926 0.926 (0.922, 0.929)

φ0(4) 0.987 0.987 (0.986, 0.988) φ0(9) 0.956 0.956 (0.954, 0.958)

φ0(5) 0.977 0.977 (0.975, 0.978) φ0(10) 0.926 0.926 (0.921, 0.930)

ω(1) 0.167 0.142 (0.102, 0.335) ω(6) 0.275 0.275 (0.244, 0.306)

ω(2) 0.095 0.094 (0.061, 0.139) ω(7) 0.343 0.342 (0.315, 0.371)

ω(3) 0.099 0.099 (0.080, 0.120) ω(8) 0.378 0.374 (0.342, 0.431)

ω(4) 0.162 0.161 (0.142, 0.187) ω(9) 0.334 0.335 (0.308, 0.361)

ω(5) 0.338 0.338 (0.306, 0.370) ω(10) 0.302 0.304 (0.252, 0.336)

µ(1) – – – µ(6) 0.068 0.068 (0.060, 0.076)

µ(2) 0.005 0.005 (0.001, 0.011) µ(7) 0.183 0.184 (0.170, 0.195)

µ(3) 0.005 0.005 (0.001, 0.011) µ(8) 0.325 0.325 (0.310, 0.340)

µ(4) 0.024 0.024 (0.017, 0.033) µ(9) 0.446 0.446 (0.430, 0.464)

µ(5) 0.037 0.037 (0.030, 0.045) µ(10) 0.611 0.611 (0.568, 0.653)

F.4 Time-dependent reproduction number

In Figure F3, we display the effective reproduction number over time with a 95% credible interval
as a red shaded area around the posterior mean. The reproduction number decreased from 2.900
prior to the lockdown to a value of 0.738 (95% CI: 0.732, 0.744) on May 4, 2020.

F.5 Mortality rates

Age-specific mortality rates are presented in Figure F4. Mortality rates are considered to be equal
for persons admitted to ICU and to a regular hospital ward as no distinction could be made between
referrals within hospitals, nor between deaths in ICU and hospital wards. Needless to say, mortality
rates increase by age with the highest mortality rate in the 90+ age category.

F.6 Infection fatality rates

Infection fatality rates (IFRs) are calculated based on the observed number of deaths by age group
and the estimated total number of infections in a specific age group (thereby accounting for asymp-
tomatic infections) by May 4, 2020. The overall IFR is estimated to be equal to 0.507% (95%
credible interval: 0.480%, 0.536%), excluding nursing home deaths. Note that the model disregards
the number of deaths in elderly homes (as this is considered to be a separate COVID-19 outbreak
which is not fully accommodated in the considered approach), thereby potentially underestimating
the IFRs in the highest age groups, at least if the increase in deaths exceeds the increase in ad-
ditional infections in nursing homes. Next to that, individuals infected prior to May 4, 2020 that
will pass away after that date are not included in the calculations, thereby underestimating the
IFRs. A more thorough estimation of the IFRs is performed by Molenberghs et al. (2020) [40],
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Figure F1: Evolution of the proportion of individuals in the different compartments by age group.
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Figure F3: Time-dependent effective reproduction number.

accommodating delay in mortality following infection. According to Molenberghs et al. (2020),
the IFRs in the nursing home population are much higher compared to those in the non-nursing
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Figure F4: Boxplots of the marginal posterior distributions of the mortality rates by age group.

home population and differences in IFRs in older age categories are linked to frailty and underlying
prevalence of comorbidities, characteristics which are very much different in nursing and non-nursing
home populations.
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Figure F5: Infection fatality rates by age group with 95% credible intervals in blue.
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F.7 Cumulative number of hospitalizations (exit scenario analyses)

In Figure F6, we show the total number of hospitalizations over time in the different scenarios
S7–S12. In general, the cumulative number of hospitalizations is highest in scenarios S10–S12 with
the cumulative number of hospitalizations on average being comparable by the end of December,
2020 in scenarios S7–S9 on the one hand, and S10–S12 on the other hand.
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Figure F6: Long-term predictions of the impact of various exit strategies on the total number of
hospitalizations over time.

F.8 Sensitivity to transmission potential of children

As a sensitivity analysis, we studied the impact of varying the infectiousness of children on the final
results. As mentioned in Section B.2, the role of children is still unclear albeit that some authors
have tried to investigate the transmission potential of children. More specifically, children present a
smaller viral load upon contracting the infection [1, 2, 3, 41, 42]. Furthermore, some authors claim
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that children have a reduced transmissibility [43, 44], albeit that it remains unclear whether this
is due to a lower probability of presenting symptoms and differential transmissibility for asymp-
tomatic versus symptomatic cases or directly by lowering infectiousness for both asymptomatic and
symptomatic children.

We present stochastic simulation results based on a 50% reduction in the infectiousness of symp-
tomatic and asymptomatic children in age category [0, 10). Posterior measures are very similar
with only a small increase in the basic reproduction number R0 (3.021, 95% credible interval:
2.987, 3.056).

In Figures F7 and F8, we depict similar exit scenarios as the long-term scenarios S7–S12 presented
in the main text. In general, the reduction in infectiousness leads to a decrease in peak size of the
next wave of hospitalizations with a small delay in timing of the peak.
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Figure F7: Long-term predictions of the impact of various exit strategies S7–S9 on the number of
new hospitalizations.
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Figure F8: Long-term predictions of the impact of various exit strategies S10–S12 on the number
of new hospitalizations.

F.9 Sensitivity to diagnostic performance of serological IgG ELISA test

Changing the underlying sensitivity curve, leaving the presumed impact of intervention measures
on the reduction of social contacts unchanged, mainly leads to a decrease in the posterior mean
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for R0 to 2.962 (95% credible interval (CI): 2.909, 3.018) and an increase for ρ−1, the average
length of the latent period, with posterior mean 5.101 (95% CI: 5.016, 5.190). In Figure F9, the
impact on the estimated overall prevalence over time is depicted. The estimated overall prevalence
and corresponding 95% credible interval are shown for the original sensitivity curve (black dashed
line with gray shaded area) and the alternative sensitivity curve (red solid line with red shaded
area) as presented in Appendix E. In case of the different sensitivity curve the estimated prevalence
is lower which is as expected given the faster detectability of IgG antibodies after SARS-CoV-2
infection. The estimated seroprevalence at the cross-sectional time points is almost identical for the
two sensitivity curves (not shown).

In addition, we present the IFRs under different assumptions with regard to the sensitivity curve
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Figure F9: Estimated time-dependent prevalence of COVID-19 under different assumptions for the
sensitivity of the IgG ELISA test.

in Figure F10. A small increase in estimated average IFRs is observed for the higher age categories
in case of the new sensitivity curve (red line in Figure E2).
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